Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Ther Adv Cardiovasc Dis ; 16: 17539447221137170, 2022.
Article in English | MEDLINE | ID: covidwho-2139019

ABSTRACT

BACKGROUND: Management of high blood pressure (BP) typically requires adherence to medication regimes. However, it is known that the COVID-19 pandemic both interrupted access to some routine prescriptions and changed some patient health behaviours. AIM: This study, therefore, retrospectively investigated prescription reimbursement of cardiovascular (CVD) medicines as a proxy measure for patient adherence and access to medicines during the pandemic. METHODS: A cohort study of all primary care patients in England prescribed CVD medicines. The exposure was to the global pandemic. Prescriptions were compared before and after the pandemic's onset. Statistical variation was the outcome of interest. RESULTS: Descriptive statistics show changes to monthly prescriptions, with wide confidence intervals indicating varying underlying practice. Analysis of variance reveals statistically significant differences for bendroflumethiazide, potassium-sparing diuretics, nicorandil, ezetimibe, ivabradine, ranolazine, colesevelam and midodrine. After the pandemic began (March-October 2020), negative parameters are observed for ACE inhibitors, beta-blockers, calcium channel blockers, statins, antiplatelet, antithrombotics, ARBs, loop diuretics, doxazosin, bendroflumethiazide, nitrates and indapamide, indicating decelerating monthly prescription items (statistically significant declines of calcium channel blockers, antithrombotic, adrenoreceptor blockers and diuretics) of CVD medicines within the general population. Many data points are not statistically significant, but fluctuations remain clinically important for the large population of patients taking these medications. CONCLUSION: A concerning decline in uptake of CVD therapies for chronic heart disease was observed. Accessible screening and treatment alongside financial relief on prescription levies are needed. A video abstract is (4 min 51 s) available: https://bit.ly/39gvEHi.


Subject(s)
COVID-19 , Cardiovascular Agents , Cardiovascular Diseases , Heart Diseases , Humans , Pandemics , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Bendroflumethiazide , Retrospective Studies , Cohort Studies , Angiotensin Receptor Antagonists , Cardiovascular Agents/adverse effects , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/epidemiology , Heart Diseases/drug therapy , Diuretics/therapeutic use , Drug Prescriptions
2.
Stem Cell Res Ther ; 12(1): 404, 2021 07 15.
Article in English | MEDLINE | ID: covidwho-1314278

ABSTRACT

The recent COronaVIrus Disease (COVID)-19 pandemic has placed an unprecedented burden on the drug development opportunity to prevent the onset of multi-organ failure.Emerging experimental reports have highlighted the beneficial effects of mesenchymal stem cell (MSC) administration against COVID-19. MSCs and their derived exosomes may attenuate SARS-CoV-2-induced inflammatory response through managing the immune cell function and cytokine expression. Although these are promising results, the exposure of MSCs to chemical compounds with pharmacological activities may further improve their homing, survival, and paracrine machinery.Nicorandil (N-[2-hydroxyethyl]-nicotinamide nitrate), an established adenosine triphosphate-sensitive potassium channel opener, is recently hypothesized to modulate inflammation as well as cell injury and death in COVID-19-affected lungs through inhibiting reactive oxygen species levels and apoptosis. Since it also exerts protective effects against hypoxia-induced MSC apoptosis, we assumed that transplanted MSCs combined to long-term nicorandil administration may survive longer in a severely inflamed microenvironment and have more beneficial effects in the treatment of SARS-CoV-2 infection than MSCs alone.


Subject(s)
COVID-19 , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , Multiple Organ Failure , Nicorandil/pharmacology , SARS-CoV-2
3.
Trials ; 22(1): 451, 2021 Jul 15.
Article in English | MEDLINE | ID: covidwho-1314273

ABSTRACT

OBJECTIVES: The pathophysiology of SARS-Cov-2 is characterized by inflammation, immune dysregulation, coagulopathy, and endothelial dysfunction. No single therapeutic agent can target all these pathophysiologic substrates. Moreover, the current therapies are not fully effective in reducing mortality in moderate and severe disease. Hence, we aim to evaluate the combination of drugs (aspirin, atorvastatin, and nicorandil) with anti-inflammatory, antithrombotic, immunomodulatory, and vasodilator properties as adjuvant therapy in covid- 19. TRIAL DESIGN: Single-centre, prospective, two-arm parallel design, open-label randomized control superiority trial. PARTICIPANTS: The study will be conducted at the covid centre of Dr. Rajendra Prasad Government Medical College Tanda Kangra, Himachal Pradesh, India. All SARS-CoV-2 infected patients requiring admission to the study centre will be screened for the trial. All patients >18years who are RT-PCR/RAT positive for SARS-CoV-2 infection with pneumonia but without ARDS at presentation (presence of clinical features of dyspnoea hypoxia, fever, cough, spo2 <94% on room air and respiratory rate >24/minute) requiring hospital admission and consenting to participate in the trial will be included. Patients with documented significant liver disease/dysfunction (AST/ALT > 240), myopathy and rhabdomyolysis (CPK > 5x normal), allergy or intolerance to statins, allergy or intolerance to aspirin, patients taking medications with significant interaction with statins, prior statin use (within 30 days), prior aspirin use (within 30 days), history of active GI bleeding in past three months, coagulopathy, thrombocytopenia (platelet count < 100000/ dl), pregnancy, active breastfeeding, patient unable to take oral or nasogastric medications, patients in altered mental status, shock, acute renal failure, acute coronary syndrome, sepsis and ARDS at presentation will be excluded. INTERVENTION AND COMPARATOR: After randomization, participants in the intervention group will receive aspirin, atorvastatin, and nicorandil (Fig. 1). Atorvastatin will be prescribed as 40 mg starting dose followed by 40 mg oral tablets once daily for ten days or till hospital discharge whichever is later. Aspirin dose will be 325 starting dose followed by 75 mg once daily for ten days or till hospital discharge whichever is later. Nicorandil will be given as 10 mg starting dose followed by 5mg twice daily ten days or till hospital discharge whichever is later. All patients in the intervention and control group will receive a standard of care for covid management as per national guidelines. All patients will receive symptomatic treatment with antipyretics, adequate hydration, anticoagulation with low molecular weight heparin, intravenous remdesivir, corticosteroids (intravenous dexamethasone for 5 days or more duration if oxygen requirement increasing or inflammatory markers are raised), and oxygen support. Patients will receive treatment for comorbid conditions as per guidelines. Fig. 1 Schematic study design MAIN OUTCOMES: The patients will be followed up for outcomes during the hospital stay or for ten days whichever is longer. The primary outcome will be in-hospital mortality. Any progression to ARDS, shock, acute kidney injury, impaired consciousness, length of hospital stay, length of mechanical ventilation (invasive plus non-invasive) will be secondary outcomes. Changes in serum markers (CRP, D -dimer, S ferritin) will be other secondary outcomes. The safety endpoints will be hepatotoxicity (ALT/AST > 3x ULN; hyperbilirubinemia), myalgia-muscle ache, or weakness without creatine kinase (CK) elevation, myositis-muscle symptoms with increased CK levels (3-10) ULN, rhabdomyolysis-muscle symptoms with marked CK elevation (typically substantially greater than 10 times the upper limit of normal [ULN]) and with creatinine elevation (usually with brown urine and urinary myoglobin) observed during the hospital stay. RANDOMIZATION: Computer-generated block randomization will be used to randomize the participants in a 1:1 ratio to the active intervention group A (Aspirin, Atorvastatin, Nicorandil) plus conventional therapy and control group B conventional therapy only. BLINDING (MASKING): The study will be an open-label trial. NUMBERS TO BE RANDOMIZED (SAMPLE SIZE): A total of 396 patients will participate in this study, which is randomly divided with 198 participants in each group. TRIAL STATUS: The first version of the protocol was approved by the institutional ethical committee on 1st February 2021, IEC /006/2021. The recruitment started on 8/4/2021 and will continue until 08/07/2021. A total of 281 patients have been enrolled till 21/5/2021. TRIAL REGISTRATION: The trial has been prospectively registered in Clinical Trial Registry - India (ICMR- NIMS): CTRI/2021/04/032648 [Registered on: 8 April 2021]. FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this letter serves as a summary of the key elements of the full protocol. The study protocol has been reported under the Standard Protocol Items: Recommendations for Clinical Interventional Trials (SPIRIT) guidelines.


Subject(s)
COVID-19 , Aspirin/adverse effects , Atorvastatin/adverse effects , Humans , India , Nicorandil , Prospective Studies , Randomized Controlled Trials as Topic , SARS-CoV-2 , Treatment Outcome
5.
Clin Exp Pharmacol Physiol ; 47(11): 1791-1797, 2020 11.
Article in English | MEDLINE | ID: covidwho-695227

ABSTRACT

At present, there is yet no specific antiviral treatment or immunization against the newly identified human severe acute respiratory syndrome virus (SARS-CoV2) that results in a rapidly progressive pandemic coronavirus disease 2019 (COVID-19). We believe in a crucial need for a clinical strategy to counteract this viral pandemic based on the known pathogenesis throughout the disease course. Evidence suggests that exaggerated patient's inflammatory response and oxidative stress are likely to aggravate the disease pathology. The resulting endothelial dysfunction further induces fibrosis and coagulopathy. These disturbances can generate severe acute respiratory distress syndrome (ARDS) that can progress into respiratory and circulatory failure. Nicorandil is an anti-anginal vasodilator drug acts by increasing nitric oxide bioavailability and opening of the KATP channel. Recently, nicorandil has been recognized to possess multiple protective effects against tissue injury. Here, we address a possible modulatory role of nicorandil against COVID-19 pathogenesis. We hypothesise nicorandil would be an effective form of adjuvant therapy against COVID-19.


Subject(s)
Coronavirus Infections/drug therapy , Nicorandil/therapeutic use , Pneumonia, Viral/drug therapy , Vasodilator Agents/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Anticoagulants/therapeutic use , Antioxidants/therapeutic use , COVID-19 , Coronavirus Infections/physiopathology , Fibrosis/prevention & control , Humans , Pandemics , Pneumonia, Viral/physiopathology , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL